Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

William B. Welte and Edward R. T. Tiekink*

Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA

Correspondence e-mail:
edward.tiekink@utsa.edu

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.094$
Data-to-parameter ratio $=21.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[bis(O,O'-diisobutyl dithiophosphato$\kappa^{2} S, S^{\prime}$)zinc (II)]- μ-1,2-di-4-pyridylethylene- $\left.\kappa^{2} N: N^{\prime}\right]$

The polymeric title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$ or $\left[\mathrm{Zn}\left\{\mathrm{S}_{2} \mathrm{P}\left(\mathrm{O}^{i} \mathrm{Bu}\right)_{2}\right\}_{2}\left\{\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right\}\right]_{n}$, has the Zn atom within a distorted octahedral $\mathrm{N}_{2} \mathrm{~S}_{4}$ geometry; the polymer toplology is a straight chain. The Zn atom is located on a centre of inversion and the bridging bipyridine ligand is situated about another centre of inversion.

Comment

Polymer formation and, once formed, polymer topology of bipyridine-type ligand adducts of zinc and cadmium dithiophosphates has been shown to be dependent upon the steric bulk of remote R groups in the dithiophosphate ligands as well as the coordinating potential of the bipyridine-type ligands (e.g. Lai et al., 2004a,b; Lai \& Tiekink, 2004; Chen et al., 2006; Tiekink, 2006). The title compound, (I), was investigated in continuation of these studies.

The Zn atom in (I) (Fig. 1) is situated on a crystallographic centre of inversion and the 1,2-di-4-pyridylethylene ligand is similarly disposed about another centre of inversion. An $\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set defines an approximate octahedral coordination geometry with two slightly asymmetrically coordinating

Figure 1
Part of the polymeric structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $-x,-y,-z$.]

Figure 2
Adjacent straight-chain polymers in the structure of (I). Colour code: Zn orange, S yellow, P pink, O red, N blue, C grey and H green.

Figure 3
The packing of (I), viewed down the b axis. The colour code is as for Fig. 2.
dithiophosphate ligands occupying the equatorial plane (Table 1). The topology of the resulting polymer is of a straight chain, propagating along [110]; from symmetry, the 1,2-di-4pyridylethylene ligand is planar. As seen from Fig. 2, the adjacent chains are shifted so that the sucessive ZnS_{4} equatorial planes lie between ethylene residues. This arrangement allows for the formation of $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1^{1 i}$ interactions, albeit weak, with $\mathrm{H} 14 \cdots \mathrm{~S}^{1 i}=3.20 \AA, \mathrm{C} 14 \cdots \mathrm{~S} 1^{\mathrm{ii}}=3.905$ (1) \AA and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1^{\mathrm{ii}}=132^{\circ}$ [symmetry code: (ii) $1+x, y, z$]. Layers thus formed stacked along the b-axis direction (Fig. 3) and are separated by hydrophobic interactions.

The polymeric structure of (I) is isomorphous with the recently reported 1,2-di-4-pyridylethane derivative (Lai et al., 2004b) and resembles closely the straight chain polymers found in both of the cyclohexyl analogues (Lai et al., 2004a), which arise owing to the steric bulk of the remote R groups in the dithiophosphate ligands.

Experimental

The title compound was prepared by refluxing the parent zinc dithiophosphate with 1,2-di-4-pyridylethylene (Aldrich) using a literature procedure (Lai et al., 2004a). Colourless crystals were isolated by the slow evaporation of an acetonitrile/ CHCl_{3} (1:1) solution of the compound (m.p. $422-426 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.95$ $\left(24 \mathrm{H}, d, J=6.69 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.00\left(4 \mathrm{H}\right.$, nonet, $\left.J=6.69 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 3.87$ $\left[8 \mathrm{H}, d d, J=6.77 \mathrm{~Hz}, J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right)=8.31 \mathrm{~Hz}, \mathrm{CH}_{2}\right], 8.87(4 \mathrm{H}, d, J=$ $6.35 \mathrm{~Hz}, \mathrm{CH}-\mathrm{N}), 7.57(4 \mathrm{H}, d, J=6.35 \mathrm{~Hz}, \mathrm{CH}-\mathrm{CH}-\mathrm{N}), 7.31(2 \mathrm{H}, s$. $\mathrm{C}=\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.0\left(\mathrm{CH}_{3}\right), 29.1\left[\mathrm{CH}-\left(\mathrm{CH}_{3}\right)\right], 73.8$ $\left(\mathrm{OCH}_{2}\right), 122.2(\mathrm{C}=\mathrm{C}), 131.5\left(\mathrm{CH}-\mathrm{C}_{\mathrm{q}}\right), 145.2\left(\mathrm{C}_{\mathrm{q}}\right), 150.3(\mathrm{CH}-\mathrm{N})$. ${ }^{31} \mathrm{P}\left(\mathrm{CDCl}_{3}\right): \delta$ 111.6. IR (KBr disk): $\nu(\mathrm{C}-\mathrm{O}) 1176(w), \nu(\mathrm{P}-\mathrm{O}) 952$ $(s), \nu(\mathrm{P}-\mathrm{S})_{\text {asymm }} 674(s), \nu(\mathrm{P}-\mathrm{S})_{\text {sym }} 553(s) \mathrm{cm}^{-1}$. The most significant observation in the TGA (Shimadzu Thermogravimetric Analyser) was a distinct weight loss between 468.8 and 498.2 K , corresponding to loss of 1,2-di-4-pyridylethylene.

metal-organic papers

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$	$Z=2$
$M_{r}=730.22$	$D_{x}=1.393 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=9.735(2) \AA$	$\mu=1.07 \mathrm{~mm}^{-1}$
$b=9.428(2) \AA$	$T=150(2) \mathrm{K}$
$c=19.035(5) \AA$	Block, colourless
$\beta=94.797(7)^{\circ}$	$0.40 \times 0.15 \times 0.10 \mathrm{~mm}$
$V=1741.0(7) \AA^{3}$	

Data collection

Rigaku AFC12K/SATURN724 diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.662, T_{\text {max }}=1$
(expected range $=0.595-0.898)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.05 P)^{2}\right. \\
& \quad+1.1222 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.70 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

43504 measured reflections 3981 independent reflections 3749 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.5^{\circ}$
$S=1.10$
3981 reflections
187 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Zn}-\mathrm{S} 1$	$2.5345(8)$	$\mathrm{S} 1-\mathrm{P} 1$	$1.9933(8)$
$\mathrm{Zn}-\mathrm{S} 2$	$2.6144(6)$	$\mathrm{S} 2-\mathrm{P} 1$	$1.9908(8)$
$\mathrm{Zn}-\mathrm{N} 1$	$2.1349(15)$		
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 2$	$80.036(17)$	$\mathrm{Zn}-\mathrm{S} 1-\mathrm{P} 1$	$84.79(2)$
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{N} 1$	$89.80(4)$	$\mathrm{Zn}-\mathrm{S} 2-\mathrm{P} 1$	$82.72(2)$
$\mathrm{S} 2-\mathrm{Zn}-\mathrm{N} 1$	$90.11(5)$		

H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}($ methyl C$)$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Crystal Impact, 2006); software used to prepare material for publication: SHELXL97.

This work was supported by the departmental research grant AX-0026 from The Robert A. Welch Foundation. Cheminova is also thanked for the gift of the dithiophosphate ligand used in this study.

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Chen, D., Lai, C. S. \& Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.
Crystal Impact (2006). DIAMOND. Version 3.1. Crystal Impact GbR, Bonn, Germany.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lai, C. S., Liu, S. \& Tiekink, E. R. T. (2004a). CrystEngComm, 6, 221-226.
Lai, C. S., Liu, S. \& Tiekink, E. R. T. (2004b). Acta Cryst. E60, m1005-m1007. Lai, C. S. \& Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.
Rigaku/MSC (2005). CrystalClear User Manual, Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tiekink, E. R. T. (2006). Frontiers in Crystal Engineering, edited by E. R. T. Tiekink \& J. J. Vittal, pp. 117-134. Chichester: John Wiley \& Sons Ltd.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

